/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ I2C_HandleTypeDef hi2c1; TIM_HandleTypeDef htim3; TIM_HandleTypeDef htim4; TIM_HandleTypeDef htim5; UART_HandleTypeDef huart6; /* Definitions for defaultTask */ osThreadId_t defaultTaskHandle; const osThreadAttr_t defaultTask_attributes = { .name = "defaultTask", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityNormal, }; /* Definitions for balance */ osThreadId_t balanceHandle; const osThreadAttr_t balance_attributes = { .name = "balance", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityLow, }; /* Definitions for motor */ osThreadId_t motorHandle; const osThreadAttr_t motor_attributes = { .name = "motor", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityLow, }; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_I2C1_Init(void); static void MX_TIM3_Init(void); static void MX_TIM4_Init(void); static void MX_TIM5_Init(void); static void MX_USART6_UART_Init(void); void StartDefaultTask(void *argument); void start_balance(void *argument); void start_motor(void *argument); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ #define TIM4_ARR_VALUE 1024 uint32_t TIM4_CurrentCount; uint32_t TIM4_PreviousCount = 0; #define TS 0.01 #define TSmillis TS*1000 #define M_PI 3.1415 float encoder_TIM4_speed_rad() { int32_t TIM4_DiffCount; TIM4_CurrentCount = __HAL_TIM_GET_COUNTER(&htim4); /* evaluate increment of TIM3 counter from previous count */ if (__HAL_TIM_IS_TIM_COUNTING_DOWN(&htim4)) { /* check for counter underflow */ if (TIM4_CurrentCount <= TIM4_PreviousCount) TIM4_DiffCount = TIM4_CurrentCount - TIM4_PreviousCount; else TIM4_DiffCount = -((TIM4_ARR_VALUE + 1) - TIM4_CurrentCount) - TIM4_PreviousCount; } else { /* check for counter overflow */ if (TIM4_CurrentCount >= TIM4_PreviousCount) TIM4_DiffCount = TIM4_CurrentCount - TIM4_PreviousCount; else TIM4_DiffCount = ((TIM4_ARR_VALUE + 1) - TIM4_PreviousCount) + TIM4_CurrentCount; } TIM4_PreviousCount = TIM4_CurrentCount; return (float) TIM4_DiffCount / (TIM4_ARR_VALUE * TS) * 2 * M_PI; } #define TIM1_ARR_VALUE 1024 uint32_t TIM1_CurrentCount; uint32_t TIM1_PreviousCount = 0; float encoder_TIM1_speed_rad() { int32_t TIM1_DiffCount; TIM1_CurrentCount = __HAL_TIM_GET_COUNTER(&htim3); /* evaluate increment of TIM3 counter from previous count */ if (__HAL_TIM_IS_TIM_COUNTING_DOWN(&htim3)) { /* check for counter underflow */ if (TIM1_CurrentCount <= TIM1_PreviousCount) TIM1_DiffCount = TIM1_CurrentCount - TIM1_PreviousCount; else TIM1_DiffCount = -((TIM1_ARR_VALUE + 1) - TIM1_CurrentCount) - TIM1_PreviousCount; } else { /* check for counter overflow */ if (TIM1_CurrentCount >= TIM1_PreviousCount) TIM1_DiffCount = TIM1_CurrentCount - TIM1_PreviousCount; else TIM1_DiffCount = ((TIM1_ARR_VALUE + 1) - TIM1_PreviousCount) + TIM1_CurrentCount; } TIM1_PreviousCount = TIM1_CurrentCount; //TIM1->SR&=~TIM_SR_BIF; //TIM1->SR&=~TIM_SR_COMIF; //TIM1->SR=1606; return (float) TIM1_DiffCount / (TIM1_ARR_VALUE * TS) * 2 * M_PI; } #define TIM5_ARR_VALUE 4000 void set_pwm(float duty, char motor, char mode) { // Limit the duty cycle to ±70% duty = fabsf(duty) > 0.7f ? (duty / fabsf(duty)) * 0.7f : duty; if (motor == 'r') { duty = -duty; if (duty >= 0) { // rotate forward if (mode == 'c') { // coast __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_1, duty * TIM5_ARR_VALUE); __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_2, 0); } else if (mode == 'b') { // brake __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_1, TIM5_ARR_VALUE); __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_2, TIM5_ARR_VALUE - duty * TIM5_ARR_VALUE); } } else { // rotate backward if (mode == 'c') { // coast __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_1, 0); __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_2, (-duty) * TIM5_ARR_VALUE); } else if (mode == 'b') { // brake __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_1, TIM5_ARR_VALUE - (-duty) * TIM5_ARR_VALUE); __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_2, TIM5_ARR_VALUE); } } } if (motor == 'l') { duty = -duty; if (duty >= 0) { // rotate forward if (mode == 'c') { __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_3, duty * TIM5_ARR_VALUE); __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_4, 0); } else if (mode == 'b') { __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_3, TIM5_ARR_VALUE); __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_4, TIM5_ARR_VALUE - duty * TIM5_ARR_VALUE); } } else { // rotate backward if (mode == 'c') { __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_3, 0); __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_4, (-duty) * TIM5_ARR_VALUE); } else if (mode == 'b') { __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_3, TIM5_ARR_VALUE - (-duty) * TIM5_ARR_VALUE); __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_4, TIM5_ARR_VALUE); } } } } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_I2C1_Init(); MX_TIM3_Init(); MX_TIM4_Init(); MX_TIM5_Init(); MX_USART6_UART_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ /* Init scheduler */ osKernelInitialize(); /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* creation of defaultTask */ defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes); /* creation of balance */ balanceHandle = osThreadNew(start_balance, NULL, &balance_attributes); /* creation of motor */ motorHandle = osThreadNew(start_motor, NULL, &motor_attributes); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ /* USER CODE BEGIN RTOS_EVENTS */ /* add events, ... */ /* USER CODE END RTOS_EVENTS */ /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } /** * @brief I2C1 Initialization Function * @param None * @retval None */ static void MX_I2C1_Init(void) { /* USER CODE BEGIN I2C1_Init 0 */ /* USER CODE END I2C1_Init 0 */ /* USER CODE BEGIN I2C1_Init 1 */ /* USER CODE END I2C1_Init 1 */ hi2c1.Instance = I2C1; hi2c1.Init.ClockSpeed = 100000; hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C1_Init 2 */ /* USER CODE END I2C1_Init 2 */ } /** * @brief TIM3 Initialization Function * @param None * @retval None */ static void MX_TIM3_Init(void) { /* USER CODE BEGIN TIM3_Init 0 */ /* USER CODE END TIM3_Init 0 */ TIM_Encoder_InitTypeDef sConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM3_Init 1 */ /* USER CODE END TIM3_Init 1 */ htim3.Instance = TIM3; htim3.Init.Prescaler = 0; htim3.Init.CounterMode = TIM_COUNTERMODE_UP; htim3.Init.Period = 65535; htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; sConfig.EncoderMode = TIM_ENCODERMODE_TI12; sConfig.IC1Polarity = TIM_ICPOLARITY_RISING; sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI; sConfig.IC1Prescaler = TIM_ICPSC_DIV1; sConfig.IC1Filter = 0; sConfig.IC2Polarity = TIM_ICPOLARITY_RISING; sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI; sConfig.IC2Prescaler = TIM_ICPSC_DIV1; sConfig.IC2Filter = 0; if (HAL_TIM_Encoder_Init(&htim3, &sConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM3_Init 2 */ HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL); /* USER CODE END TIM3_Init 2 */ } /** * @brief TIM4 Initialization Function * @param None * @retval None */ static void MX_TIM4_Init(void) { /* USER CODE BEGIN TIM4_Init 0 */ /* USER CODE END TIM4_Init 0 */ TIM_Encoder_InitTypeDef sConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM4_Init 1 */ /* USER CODE END TIM4_Init 1 */ htim4.Instance = TIM4; htim4.Init.Prescaler = 0; htim4.Init.CounterMode = TIM_COUNTERMODE_UP; htim4.Init.Period = 65535; htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; sConfig.EncoderMode = TIM_ENCODERMODE_TI12; sConfig.IC1Polarity = TIM_ICPOLARITY_RISING; sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI; sConfig.IC1Prescaler = TIM_ICPSC_DIV1; sConfig.IC1Filter = 0; sConfig.IC2Polarity = TIM_ICPOLARITY_RISING; sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI; sConfig.IC2Prescaler = TIM_ICPSC_DIV1; sConfig.IC2Filter = 0; if (HAL_TIM_Encoder_Init(&htim4, &sConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM4_Init 2 */ HAL_TIM_Encoder_Start(&htim4, TIM_CHANNEL_ALL); /* USER CODE END TIM4_Init 2 */ } /** * @brief TIM5 Initialization Function * @param None * @retval None */ static void MX_TIM5_Init(void) { /* USER CODE BEGIN TIM5_Init 0 */ /* USER CODE END TIM5_Init 0 */ TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; /* USER CODE BEGIN TIM5_Init 1 */ /* USER CODE END TIM5_Init 1 */ htim5.Instance = TIM5; htim5.Init.Prescaler = 15; htim5.Init.CounterMode = TIM_COUNTERMODE_UP; htim5.Init.Period = 4000; htim5.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim5.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_PWM_Init(&htim5) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim5, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim5, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_ConfigChannel(&htim5, &sConfigOC, TIM_CHANNEL_2) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_ConfigChannel(&htim5, &sConfigOC, TIM_CHANNEL_3) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_ConfigChannel(&htim5, &sConfigOC, TIM_CHANNEL_4) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM5_Init 2 */ __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_1, 100); __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_2, 100); __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_3, 100); __HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_4, 100); HAL_TIM_PWM_Start(&htim5, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim5, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htim5, TIM_CHANNEL_3); HAL_TIM_PWM_Start(&htim5, TIM_CHANNEL_4); /* USER CODE END TIM5_Init 2 */ HAL_TIM_MspPostInit(&htim5); } /** * @brief USART6 Initialization Function * @param None * @retval None */ static void MX_USART6_UART_Init(void) { /* USER CODE BEGIN USART6_Init 0 */ /* USER CODE END USART6_Init 0 */ /* USER CODE BEGIN USART6_Init 1 */ /* USER CODE END USART6_Init 1 */ huart6.Instance = USART6; huart6.Init.BaudRate = 115200; huart6.Init.WordLength = UART_WORDLENGTH_8B; huart6.Init.StopBits = UART_STOPBITS_1; huart6.Init.Parity = UART_PARITY_NONE; huart6.Init.Mode = UART_MODE_TX_RX; huart6.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart6.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart6) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART6_Init 2 */ /* USER CODE END USART6_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_RESET); /*Configure GPIO pin : PC13 */ GPIO_InitStruct.Pin = GPIO_PIN_13; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_RESET); //turn it on /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the defaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartDefaultTask */ void StartDefaultTask(void *argument) { /* USER CODE BEGIN 5 */ /* Infinite loop */ for (;;) { osDelay(500); HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_RESET); //turn it on osDelay(500); HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_SET); //turn it on } /* USER CODE END 5 */ } /* USER CODE BEGIN Header_start_balance */ struct motorstruct { float wr, ur; float wl, ul; } motor; #define MPU6050_ADDR (0x68 << 1) #define MPU6050_REG_DATA 0x3B #define MPU6050_PWR_MGMT_1 0x6B // Sensitivity (default ±2g, ±250°/s) #define ACCEL_SENS 16384.0f #define GYRO_SENS 131.0f typedef struct { float accel[3]; // g float gyro[3]; // °/s float temp; // °C } MPU6050_Data; void MPU6050_Init(void) { uint8_t wake = 0x00; HAL_I2C_Mem_Write(&hi2c1, MPU6050_ADDR, MPU6050_PWR_MGMT_1, I2C_MEMADD_SIZE_8BIT, &wake, 1, 100); HAL_Delay(100); } HAL_StatusTypeDef MPU6050_Read(MPU6050_Data *data) { uint8_t raw[14]; HAL_StatusTypeDef ret; ret = HAL_I2C_Mem_Read(&hi2c1, MPU6050_ADDR, MPU6050_REG_DATA, I2C_MEMADD_SIZE_8BIT, raw, 14, 100); if (ret != HAL_OK) return ret; int16_t accel_raw[3], gyro_raw[3], temp_raw; accel_raw[0] = (int16_t) (raw[0] << 8 | raw[1]); accel_raw[1] = (int16_t) (raw[2] << 8 | raw[3]); accel_raw[2] = (int16_t) (raw[4] << 8 | raw[5]); temp_raw = (int16_t) (raw[6] << 8 | raw[7]); gyro_raw[0] = (int16_t) (raw[8] << 8 | raw[9]); gyro_raw[1] = (int16_t) (raw[10] << 8 | raw[11]); gyro_raw[2] = (int16_t) (raw[12] << 8 | raw[13]); // Scale to real units data->accel[0] = accel_raw[0] / ACCEL_SENS; data->accel[1] = accel_raw[1] / ACCEL_SENS; data->accel[2] = accel_raw[2] / ACCEL_SENS; data->gyro[0] = gyro_raw[0] / GYRO_SENS; data->gyro[1] = gyro_raw[1] / GYRO_SENS; data->gyro[2] = gyro_raw[2] / GYRO_SENS; data->temp = (temp_raw / 340.0f) + 36.53f; return HAL_OK; } /** * @brief Function implementing the balance thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_start_balance */ void start_balance(void *argument) { /* USER CODE BEGIN start_balance */ /* Infinite loop */ MPU6050_Data sensor; MPU6050_Init(); HAL_Delay(500); float alpha = 0.9; float Kp = 5; //80 good float Ki = 5 * 0.15*0; float Kd = 100 * 0; float integral; float sat_diff; float pitch; float last_pitch; float Kw = 0.01; float position; float position_kp = -10; for (;;) { vTaskDelay(TSmillis); if (MPU6050_Read(&sensor) == HAL_OK) { // Now sensor.accel[], sensor.gyro[], sensor.temp are ready to use // Example: print over UART, use in control loop, etc. // XYZ float gyro_pitch = sensor.gyro[0] * (M_PI / 180.0f) * TS; // convert °/s → rad/s float acc_pitch = atan2f(sensor.accel[1], sensor.accel[2]); pitch = alpha * (pitch + gyro_pitch) + (1.0f - alpha) * acc_pitch; float error = pitch; // // float anti_windup_1 = Ki * error1 - sat_diff_1 * Kw; // integral1 += anti_windup_1 * TS; // float control1 = integral1 + Kp * error1; // float unsat_control_1 = control1; // control1 = // fabsf(control1) > 0.7f ? // (control1 / fabsf(control1)) * 0.7f : control1; // sat_diff_1 = unsat_control_1 - control1; integral += error; float control = Kp * error + integral * Ki + (last_pitch - pitch) * Kd + position * position_kp; set_pwm(control, 'l', 'c'); set_pwm(-control , 'r', 'c'); //motor.ul = motor.ur; last_pitch = pitch; position += motor.wl * 0.03 * 2 * M_PI * TS; //3cm wheel radius } else { //motor.ur = 0; //motor.ul = motor.ur set_pwm(0, 'l', 'c'); set_pwm(0, 'r', 'c'); } //char uart_buf[20]; //int len = sprintf(uart_buf, "%.3fp\r\n", pitch); //HAL_UART_Transmit(&huart6, (uint8_t*) uart_buf, len, HAL_MAX_DELAY); } /* USER CODE END start_balance */ } /* USER CODE BEGIN Header_start_motor */ /** * @brief Function implementing the motor thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_start_motor */ void start_motor(void *argument) { /* USER CODE BEGIN start_motor */ /* Infinite loop */ float tempspeed; float Ki = 4; float Kp = 0.005 * 10; float Kw = 5; float integral1 = 0; float integral2 = 0; float sat_diff_1 = 0; float sat_diff_2 = 0; static char statsBuffer[200]; motor.ul = 0.0 * M_PI; motor.ur = 0.0 * M_PI; for (;;) { vTaskDelay(TSmillis); //vTaskGetRunTimeStats(statsBuffer); //motor.wr = encoder_TIM3_speed_rad(); tempspeed = -encoder_TIM4_speed_rad(); if (fabsf(tempspeed - motor.wr) < 700.0f) { motor.wr = tempspeed; } tempspeed = encoder_TIM1_speed_rad(); if (fabsf(tempspeed - motor.wl) > 70.0f) { } else { motor.wl = tempspeed; } // Calculation for Motor 1 control signal float error1 = (-1) * motor.ur - motor.wr; if (error1 > 10) { int t = 0; } float anti_windup_1 = Ki * error1 - sat_diff_1 * Kw; integral1 += anti_windup_1 * TS; float control1 = integral1 + Kp * error1; float unsat_control_1 = control1; control1 = fabsf(control1) > 0.7f ? (control1 / fabsf(control1)) * 0.7f : control1; sat_diff_1 = unsat_control_1 - control1; //set_pwm(control1, 'r', 'c'); //set_pwm(0.15, 'r', 'c'); // Calculation for Motor 2 control signal float error2 = motor.ul - motor.wl; if (error2 > 10) { int t = 0; } float anti_windup_2 = Ki * error2 - sat_diff_2 * Kw; integral2 += anti_windup_2 * TS; float control2 = integral2 + Kp * error2; float unsat_control_2 = control2; control2 = fabsf(control2) > 0.7f ? (control2 / fabsf(control2)) * 0.7f : control2; sat_diff_2 = unsat_control_2 - control2; //set_pwm(control2, 'l', 'c'); //set_pwm(0.15, 'l', 'c'); } /* USER CODE END start_motor */ } /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM10 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM10) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */