touchscreengames/Core/Src/main.c
2025-10-17 20:02:09 +02:00

904 lines
25 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim4;
TIM_HandleTypeDef htim5;
UART_HandleTypeDef huart6;
/* Definitions for defaultTask */
osThreadId_t defaultTaskHandle;
const osThreadAttr_t defaultTask_attributes = {
.name = "defaultTask",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityNormal,
};
/* Definitions for balance */
osThreadId_t balanceHandle;
const osThreadAttr_t balance_attributes = {
.name = "balance",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for motor */
osThreadId_t motorHandle;
const osThreadAttr_t motor_attributes = {
.name = "motor",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM4_Init(void);
static void MX_TIM5_Init(void);
static void MX_USART6_UART_Init(void);
void StartDefaultTask(void *argument);
void start_balance(void *argument);
void start_motor(void *argument);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
#define TIM4_ARR_VALUE 1024
uint32_t TIM4_CurrentCount;
uint32_t TIM4_PreviousCount = 0;
#define TS 0.01
#define TSmillis TS*1000
#define M_PI 3.1415
float encoder_TIM4_speed_rad() {
int32_t TIM4_DiffCount;
TIM4_CurrentCount = __HAL_TIM_GET_COUNTER(&htim4);
/* evaluate increment of TIM3 counter from previous count */
if (__HAL_TIM_IS_TIM_COUNTING_DOWN(&htim4)) {
/* check for counter underflow */
if (TIM4_CurrentCount <= TIM4_PreviousCount)
TIM4_DiffCount = TIM4_CurrentCount - TIM4_PreviousCount;
else
TIM4_DiffCount = -((TIM4_ARR_VALUE + 1) - TIM4_CurrentCount)
- TIM4_PreviousCount;
} else {
/* check for counter overflow */
if (TIM4_CurrentCount >= TIM4_PreviousCount)
TIM4_DiffCount = TIM4_CurrentCount - TIM4_PreviousCount;
else
TIM4_DiffCount = ((TIM4_ARR_VALUE + 1) - TIM4_PreviousCount)
+ TIM4_CurrentCount;
}
TIM4_PreviousCount = TIM4_CurrentCount;
return (float) TIM4_DiffCount / (TIM4_ARR_VALUE * TS) * 2 * M_PI;
}
#define TIM1_ARR_VALUE 1024
uint32_t TIM1_CurrentCount;
uint32_t TIM1_PreviousCount = 0;
float encoder_TIM1_speed_rad() {
int32_t TIM1_DiffCount;
TIM1_CurrentCount = __HAL_TIM_GET_COUNTER(&htim3);
/* evaluate increment of TIM3 counter from previous count */
if (__HAL_TIM_IS_TIM_COUNTING_DOWN(&htim3)) {
/* check for counter underflow */
if (TIM1_CurrentCount <= TIM1_PreviousCount)
TIM1_DiffCount = TIM1_CurrentCount - TIM1_PreviousCount;
else
TIM1_DiffCount = -((TIM1_ARR_VALUE + 1) - TIM1_CurrentCount)
- TIM1_PreviousCount;
} else {
/* check for counter overflow */
if (TIM1_CurrentCount >= TIM1_PreviousCount)
TIM1_DiffCount = TIM1_CurrentCount - TIM1_PreviousCount;
else
TIM1_DiffCount = ((TIM1_ARR_VALUE + 1) - TIM1_PreviousCount)
+ TIM1_CurrentCount;
}
TIM1_PreviousCount = TIM1_CurrentCount;
//TIM1->SR&=~TIM_SR_BIF;
//TIM1->SR&=~TIM_SR_COMIF;
//TIM1->SR=1606;
return (float) TIM1_DiffCount / (TIM1_ARR_VALUE * TS) * 2 * M_PI;
}
#define TIM5_ARR_VALUE 4000
void set_pwm(float duty, char motor, char mode) {
// Limit the duty cycle to ±70%
duty = fabsf(duty) > 0.7f ? (duty / fabsf(duty)) * 0.7f : duty;
if (motor == 'r') {
duty = -duty;
if (duty >= 0) { // rotate forward
if (mode == 'c') { // coast
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_1,
duty * TIM5_ARR_VALUE);
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_2, 0);
} else if (mode == 'b') { // brake
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_1, TIM5_ARR_VALUE);
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_2,
TIM5_ARR_VALUE - duty * TIM5_ARR_VALUE);
}
} else { // rotate backward
if (mode == 'c') { // coast
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_1, 0);
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_2,
(-duty) * TIM5_ARR_VALUE);
} else if (mode == 'b') { // brake
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_1,
TIM5_ARR_VALUE - (-duty) * TIM5_ARR_VALUE);
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_2, TIM5_ARR_VALUE);
}
}
}
if (motor == 'l') {
duty = -duty;
if (duty >= 0) { // rotate forward
if (mode == 'c') {
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_3,
duty * TIM5_ARR_VALUE);
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_4, 0);
} else if (mode == 'b') {
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_3, TIM5_ARR_VALUE);
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_4,
TIM5_ARR_VALUE - duty * TIM5_ARR_VALUE);
}
} else { // rotate backward
if (mode == 'c') {
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_3, 0);
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_4,
(-duty) * TIM5_ARR_VALUE);
} else if (mode == 'b') {
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_3,
TIM5_ARR_VALUE - (-duty) * TIM5_ARR_VALUE);
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_4, TIM5_ARR_VALUE);
}
}
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_I2C1_Init();
MX_TIM3_Init();
MX_TIM4_Init();
MX_TIM5_Init();
MX_USART6_UART_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Init scheduler */
osKernelInitialize();
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* creation of defaultTask */
defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes);
/* creation of balance */
balanceHandle = osThreadNew(start_balance, NULL, &balance_attributes);
/* creation of motor */
motorHandle = osThreadNew(start_motor, NULL, &motor_attributes);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* USER CODE BEGIN RTOS_EVENTS */
/* add events, ... */
/* USER CODE END RTOS_EVENTS */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1) {
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 100000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI12;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 0;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;
if (HAL_TIM_Encoder_Init(&htim3, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL);
/* USER CODE END TIM3_Init 2 */
}
/**
* @brief TIM4 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 0;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 65535;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI12;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 0;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;
if (HAL_TIM_Encoder_Init(&htim4, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
HAL_TIM_Encoder_Start(&htim4, TIM_CHANNEL_ALL);
/* USER CODE END TIM4_Init 2 */
}
/**
* @brief TIM5 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM5_Init(void)
{
/* USER CODE BEGIN TIM5_Init 0 */
/* USER CODE END TIM5_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM5_Init 1 */
/* USER CODE END TIM5_Init 1 */
htim5.Instance = TIM5;
htim5.Init.Prescaler = 15;
htim5.Init.CounterMode = TIM_COUNTERMODE_UP;
htim5.Init.Period = 4000;
htim5.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim5.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim5) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim5, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim5, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim5, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim5, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim5, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM5_Init 2 */
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_1, 100);
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_2, 100);
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_3, 100);
__HAL_TIM_SET_COMPARE(&htim5, TIM_CHANNEL_4, 100);
HAL_TIM_PWM_Start(&htim5, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim5, TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim5, TIM_CHANNEL_3);
HAL_TIM_PWM_Start(&htim5, TIM_CHANNEL_4);
/* USER CODE END TIM5_Init 2 */
HAL_TIM_MspPostInit(&htim5);
}
/**
* @brief USART6 Initialization Function
* @param None
* @retval None
*/
static void MX_USART6_UART_Init(void)
{
/* USER CODE BEGIN USART6_Init 0 */
/* USER CODE END USART6_Init 0 */
/* USER CODE BEGIN USART6_Init 1 */
/* USER CODE END USART6_Init 1 */
huart6.Instance = USART6;
huart6.Init.BaudRate = 115200;
huart6.Init.WordLength = UART_WORDLENGTH_8B;
huart6.Init.StopBits = UART_STOPBITS_1;
huart6.Init.Parity = UART_PARITY_NONE;
huart6.Init.Mode = UART_MODE_TX_RX;
huart6.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart6.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart6) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART6_Init 2 */
/* USER CODE END USART6_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_RESET);
/*Configure GPIO pin : PC13 */
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_RESET); //turn it on
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/* USER CODE BEGIN Header_StartDefaultTask */
/**
* @brief Function implementing the defaultTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for (;;) {
osDelay(500);
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_RESET); //turn it on
osDelay(500);
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_SET); //turn it on
}
/* USER CODE END 5 */
}
/* USER CODE BEGIN Header_start_balance */
struct motorstruct {
float wr, ur;
float wl, ul;
} motor;
#define MPU6050_ADDR (0x68 << 1)
#define MPU6050_REG_DATA 0x3B
#define MPU6050_PWR_MGMT_1 0x6B
// Sensitivity (default ±2g, ±250°/s)
#define ACCEL_SENS 16384.0f
#define GYRO_SENS 131.0f
typedef struct {
float accel[3]; // g
float gyro[3]; // °/s
float temp; // °C
} MPU6050_Data;
void MPU6050_Init(void) {
uint8_t wake = 0x00;
HAL_I2C_Mem_Write(&hi2c1,
MPU6050_ADDR,
MPU6050_PWR_MGMT_1,
I2C_MEMADD_SIZE_8BIT, &wake, 1, 100);
HAL_Delay(100);
}
HAL_StatusTypeDef MPU6050_Read(MPU6050_Data *data) {
uint8_t raw[14];
HAL_StatusTypeDef ret;
ret = HAL_I2C_Mem_Read(&hi2c1,
MPU6050_ADDR,
MPU6050_REG_DATA,
I2C_MEMADD_SIZE_8BIT, raw, 14, 100);
if (ret != HAL_OK)
return ret;
int16_t accel_raw[3], gyro_raw[3], temp_raw;
accel_raw[0] = (int16_t) (raw[0] << 8 | raw[1]);
accel_raw[1] = (int16_t) (raw[2] << 8 | raw[3]);
accel_raw[2] = (int16_t) (raw[4] << 8 | raw[5]);
temp_raw = (int16_t) (raw[6] << 8 | raw[7]);
gyro_raw[0] = (int16_t) (raw[8] << 8 | raw[9]);
gyro_raw[1] = (int16_t) (raw[10] << 8 | raw[11]);
gyro_raw[2] = (int16_t) (raw[12] << 8 | raw[13]);
// Scale to real units
data->accel[0] = accel_raw[0] / ACCEL_SENS;
data->accel[1] = accel_raw[1] / ACCEL_SENS;
data->accel[2] = accel_raw[2] / ACCEL_SENS;
data->gyro[0] = gyro_raw[0] / GYRO_SENS;
data->gyro[1] = gyro_raw[1] / GYRO_SENS;
data->gyro[2] = gyro_raw[2] / GYRO_SENS;
data->temp = (temp_raw / 340.0f) + 36.53f;
return HAL_OK;
}
/**
* @brief Function implementing the balance thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_start_balance */
void start_balance(void *argument)
{
/* USER CODE BEGIN start_balance */
/* Infinite loop */
MPU6050_Data sensor;
MPU6050_Init();
HAL_Delay(500);
float alpha = 0.9;
float Kp = 5; //80 good
float Ki = 5 * 0.15*0;
float Kd = 100 * 0;
float integral;
float sat_diff;
float pitch;
float last_pitch;
float Kw = 0.01;
float position;
float position_kp = -10;
for (;;) {
vTaskDelay(TSmillis);
if (MPU6050_Read(&sensor) == HAL_OK) {
// Now sensor.accel[], sensor.gyro[], sensor.temp are ready to use
// Example: print over UART, use in control loop, etc.
// XYZ
float gyro_pitch = sensor.gyro[0] * (M_PI / 180.0f) * TS; // convert °/s → rad/s
float acc_pitch = atan2f(sensor.accel[1], sensor.accel[2]);
pitch = alpha * (pitch + gyro_pitch) + (1.0f - alpha) * acc_pitch;
float error = pitch;
//
// float anti_windup_1 = Ki * error1 - sat_diff_1 * Kw;
// integral1 += anti_windup_1 * TS;
// float control1 = integral1 + Kp * error1;
// float unsat_control_1 = control1;
// control1 =
// fabsf(control1) > 0.7f ?
// (control1 / fabsf(control1)) * 0.7f : control1;
// sat_diff_1 = unsat_control_1 - control1;
integral += error;
float control = Kp * error + integral * Ki
+ (last_pitch - pitch) * Kd + position * position_kp;
set_pwm(control, 'l', 'c');
set_pwm(-control , 'r', 'c');
//motor.ul = motor.ur;
last_pitch = pitch;
position += motor.wl * 0.03 * 2 * M_PI * TS; //3cm wheel radius
} else {
//motor.ur = 0;
//motor.ul = motor.ur
set_pwm(0, 'l', 'c');
set_pwm(0, 'r', 'c');
}
//char uart_buf[20];
//int len = sprintf(uart_buf, "%.3fp\r\n", pitch);
//HAL_UART_Transmit(&huart6, (uint8_t*) uart_buf, len, HAL_MAX_DELAY);
}
/* USER CODE END start_balance */
}
/* USER CODE BEGIN Header_start_motor */
/**
* @brief Function implementing the motor thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_start_motor */
void start_motor(void *argument)
{
/* USER CODE BEGIN start_motor */
/* Infinite loop */
float tempspeed;
float Ki = 4;
float Kp = 0.005 * 10;
float Kw = 5;
float integral1 = 0;
float integral2 = 0;
float sat_diff_1 = 0;
float sat_diff_2 = 0;
static char statsBuffer[200];
motor.ul = 0.0 * M_PI;
motor.ur = 0.0 * M_PI;
for (;;) {
vTaskDelay(TSmillis);
//vTaskGetRunTimeStats(statsBuffer);
//motor.wr = encoder_TIM3_speed_rad();
tempspeed = -encoder_TIM4_speed_rad();
if (fabsf(tempspeed - motor.wr) < 700.0f) {
motor.wr = tempspeed;
}
tempspeed = encoder_TIM1_speed_rad();
if (fabsf(tempspeed - motor.wl) > 70.0f) {
} else {
motor.wl = tempspeed;
}
// Calculation for Motor 1 control signal
float error1 = (-1) * motor.ur - motor.wr;
if (error1 > 10) {
int t = 0;
}
float anti_windup_1 = Ki * error1 - sat_diff_1 * Kw;
integral1 += anti_windup_1 * TS;
float control1 = integral1 + Kp * error1;
float unsat_control_1 = control1;
control1 =
fabsf(control1) > 0.7f ?
(control1 / fabsf(control1)) * 0.7f : control1;
sat_diff_1 = unsat_control_1 - control1;
//set_pwm(control1, 'r', 'c');
//set_pwm(0.15, 'r', 'c');
// Calculation for Motor 2 control signal
float error2 = motor.ul - motor.wl;
if (error2 > 10) {
int t = 0;
}
float anti_windup_2 = Ki * error2 - sat_diff_2 * Kw;
integral2 += anti_windup_2 * TS;
float control2 = integral2 + Kp * error2;
float unsat_control_2 = control2;
control2 =
fabsf(control2) > 0.7f ?
(control2 / fabsf(control2)) * 0.7f : control2;
sat_diff_2 = unsat_control_2 - control2;
//set_pwm(control2, 'l', 'c');
//set_pwm(0.15, 'l', 'c');
}
/* USER CODE END start_motor */
}
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM10 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM10)
{
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1) {
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */